Look up current research information using Perplexity's Sonar Pro Search or Sonar Reasoning Pro models through OpenRouter. Automatically selects the best model based on query complexity. Search academic papers, recent studies, technical documentation, and general research information with citations.
Cloud-based quantum chemistry platform with Python API. Preferred for computational chemistry workflows including pKa prediction, geometry optimization, conformer searching, molecular property calculations, protein-ligand docking (AutoDock Vina), and AI protein cofolding (Chai-1, Boltz-1/2). Use when tasks involve quantum chemistry calculations, molecular property prediction, DFT or semiempirical methods, neural network potentials (AIMNet2), protein-ligand binding predictions, or automated computational chemistry pipelines. Provides cloud compute resources with no local setup required.
Standard single-cell RNA-seq analysis pipeline. Use for QC, normalization, dimensionality reduction (PCA/UMAP/t-SNE), clustering, differential expression, and visualization. Best for exploratory scRNA-seq analysis with established workflows. For deep learning models use scvi-tools; for data format questions use anndata.
Systematically evaluate scholarly work using the ScholarEval framework, providing structured assessment across research quality dimensions including problem formulation, methodology, analysis, and writing with quantitative scoring and actionable feedback.
Creative research ideation and exploration. Use for open-ended brainstorming sessions, exploring interdisciplinary connections, challenging assumptions, or identifying research gaps. Best for early-stage research planning when you do not have specific observations yet. For formulating testable hypotheses from data use hypothesis-generation.
Evaluate scientific claims and evidence quality. Use for assessing experimental design validity, identifying biases and confounders, applying evidence grading frameworks (GRADE, Cochrane Risk of Bias), or teaching critical analysis. Best for understanding evidence quality, identifying flaws. For formal peer review writing use peer-review.
Create publication-quality scientific diagrams using Nano Banana Pro AI with smart iterative refinement. Uses Gemini 3 Pro for quality review. Only regenerates if quality is below threshold for your document type. Specialized in neural network architectures, system diagrams, flowcharts, biological pathways, and complex scientific visualizations.
Build slide decks and presentations for research talks. Use this for making PowerPoint slides, conference presentations, seminar talks, research presentations, thesis defense slides, or any scientific talk. Provides slide structure, design templates, timing guidance, and visual validation. Works with PowerPoint and LaTeX Beamer.
Meta-skill for publication-ready figures. Use when creating journal submission figures requiring multi-panel layouts, significance annotations, error bars, colorblind-safe palettes, and specific journal formatting (Nature, Science, Cell). Orchestrates matplotlib/seaborn/plotly with publication styles. For quick exploration use seaborn or plotly directly.
Core skill for the deep research and writing tool. Write scientific manuscripts in full paragraphs (never bullet points). Use two-stage process with (1) section outlines with key points using research-lookup then (2) convert to flowing prose. IMRAD structure, citations (APA/AMA/Vancouver), figures/tables, reporting guidelines (CONSORT/STROBE/PRISMA), for research papers and journal submissions.
Biological data toolkit. Sequence analysis, alignments, phylogenetic trees, diversity metrics (alpha/beta, UniFrac), ordination (PCoA), PERMANOVA, FASTA/Newick I/O, for microbiome analysis.
Machine learning in Python with scikit-learn. Use when working with supervised learning (classification, regression), unsupervised learning (clustering, dimensionality reduction), model evaluation, hyperparameter tuning, preprocessing, or building ML pipelines. Provides comprehensive reference documentation for algorithms, preprocessing techniques, pipelines, and best practices.
Comprehensive toolkit for survival analysis and time-to-event modeling in Python using scikit-survival. Use this skill when working with censored survival data, performing time-to-event analysis, fitting Cox models, Random Survival Forests, Gradient Boosting models, or Survival SVMs, evaluating survival predictions with concordance index or Brier score, handling competing risks, or implementing any survival analysis workflow with the scikit-survival library.
Deep generative models for single-cell omics. Use when you need probabilistic batch correction (scVI), transfer learning, differential expression with uncertainty, or multi-modal integration (TOTALVI, MultiVI). Best for advanced modeling, batch effects, multimodal data. For standard analysis pipelines use scanpy.
Statistical visualization with pandas integration. Use for quick exploration of distributions, relationships, and categorical comparisons with attractive defaults. Best for box plots, violin plots, pair plots, heatmaps. Built on matplotlib. For interactive plots use plotly; for publication styling use scientific-visualization.
Model interpretability and explainability using SHAP (SHapley Additive exPlanations). Use this skill when explaining machine learning model predictions, computing feature importance, generating SHAP plots (waterfall, beeswarm, bar, scatter, force, heatmap), debugging models, analyzing model bias or fairness, comparing models, or implementing explainable AI. Works with tree-based models (XGBoost, LightGBM, Random Forest), deep learning (TensorFlow, PyTorch), linear models, and any black-box model.
Process-based discrete-event simulation framework in Python. Use this skill when building simulations of systems with processes, queues, resources, and time-based events such as manufacturing systems, service operations, network traffic, logistics, or any system where entities interact with shared resources over time.
Production-ready reinforcement learning algorithms (PPO, SAC, DQN, TD3, DDPG, A2C) with scikit-learn-like API. Use for standard RL experiments, quick prototyping, and well-documented algorithm implementations. Best for single-agent RL with Gymnasium environments. For high-performance parallel training, multi-agent systems, or custom vectorized environments, use pufferlib instead.