Query openFDA API for drugs, devices, adverse events, recalls, regulatory submissions (510k, PMA), substance identification (UNII), for FDA regulatory data analysis and safety research.
Parse FCS (Flow Cytometry Standard) files v2.0-3.1. Extract events as NumPy arrays, read metadata/channels, convert to CSV/DataFrame, for flow cytometry data preprocessing.
Framework for computational fluid dynamics simulations using Python. Use when running fluid dynamics simulations including Navier-Stokes equations (2D/3D), shallow water equations, stratified flows, or when analyzing turbulence, vortex dynamics, or geophysical flows. Provides pseudospectral methods with FFT, HPC support, and comprehensive output analysis.
Query FRED (Federal Reserve Economic Data) API for 800,000+ economic time series from 100+ sources. Access GDP, unemployment, inflation, interest rates, exchange rates, housing, and regional data. Use for macroeconomic analysis, financial research, policy studies, economic forecasting, and academic research requiring U.S. and international economic indicators.
Query NCBI Gene via E-utilities/Datasets API. Search by symbol/ID, retrieve gene info (RefSeqs, GO, locations, phenotypes), batch lookups, for gene annotation and functional analysis.
Generate or edit images using AI models (FLUX, Gemini). Use for general-purpose image generation including photos, illustrations, artwork, visual assets, concept art, and any image that is not a technical diagram or schematic. For flowcharts, circuits, pathways, and technical diagrams, use the scientific-schematics skill instead.
This skill should be used when working with genomic interval data (BED files) for machine learning tasks. Use for training region embeddings (Region2Vec, BEDspace), single-cell ATAC-seq analysis (scEmbed), building consensus peaks (universes), or any ML-based analysis of genomic regions. Applies to BED file collections, scATAC-seq data, chromatin accessibility datasets, and region-based genomic feature learning.
Access NCBI GEO for gene expression/genomics data. Search/download microarray and RNA-seq datasets (GSE, GSM, GPL), retrieve SOFT/Matrix files, for transcriptomics and expression analysis.
Python library for working with geospatial vector data including shapefiles, GeoJSON, and GeoPackage files. Use when working with geographic data for spatial analysis, geometric operations, coordinate transformations, spatial joins, overlay operations, choropleth mapping, or any task involving reading/writing/analyzing vector geographic data. Supports PostGIS databases, interactive maps, and integration with matplotlib/folium/cartopy. Use for tasks like buffer analysis, spatial joins between datasets, dissolving boundaries, clipping data, calculating areas/distances, reprojecting coordinate systems, creating maps, or converting between spatial file formats.
This skill should be used at the start of any computationally intensive scientific task to detect and report available system resources (CPU cores, GPUs, memory, disk space). It creates a JSON file with resource information and strategic recommendations that inform computational approach decisions such as whether to use parallel processing (joblib, multiprocessing), out-of-core computing (Dask, Zarr), GPU acceleration (PyTorch, JAX), or memory-efficient strategies. Use this skill before running analyses, training models, processing large datasets, or any task where resource constraints matter.
Fast CLI/Python queries to 20+ bioinformatics databases. Use for quick lookups: gene info, BLAST searches, AlphaFold structures, enrichment analysis. Best for interactive exploration, simple queries. For batch processing or advanced BLAST use biopython; for multi-database Python workflows use bioservices.
High-performance toolkit for genomic interval analysis in Rust with Python bindings. Use when working with genomic regions, BED files, coverage tracks, overlap detection, tokenization for ML models, or fragment analysis in computational genomics and machine learning applications.
Query NHGRI-EBI GWAS Catalog for SNP-trait associations. Search variants by rs ID, disease/trait, gene, retrieve p-values and summary statistics, for genetic epidemiology and polygenic risk scores.
Lightweight WSI tile extraction and preprocessing. Use for basic slide processing tissue detection, tile extraction, stain normalization for H&E images. Best for simple pipelines, dataset preparation, quick tile-based analysis. For advanced spatial proteomics, multiplexed imaging, or deep learning pipelines use pathml.
Access Human Metabolome Database (220K+ metabolites). Search by name/ID/structure, retrieve chemical properties, biomarker data, NMR/MS spectra, pathways, for metabolomics and identification.
Automated LLM-driven hypothesis generation and testing on tabular datasets. Use when you want to systematically explore hypotheses about patterns in empirical data (e.g., deception detection, content analysis). Combines literature insights with data-driven hypothesis testing. For manual hypothesis formulation use hypothesis-generation; for creative ideation use scientific-brainstorming.
Structured hypothesis formulation from observations. Use when you have experimental observations or data and need to formulate testable hypotheses with predictions, propose mechanisms, and design experiments to test them. Follows scientific method framework. For open-ended ideation use scientific-brainstorming; for automated LLM-driven hypothesis testing on datasets use hypogenic.
Query and download public cancer imaging data from NCI Imaging Data Commons using idc-index. Use for accessing large-scale radiology (CT, MR, PET) and pathology datasets for AI training or research. No authentication required. Query by metadata, visualize in browser, check licenses.