hugging-face-cli

使用 `hf` CLI 执行 Hugging Face Hub 操作。适用于用户需要下载模型/数据集/空间、上传文件至 Hub 仓库、创建仓库、管理本地缓存或在 HF 基础设施上运行计算任务的场景。涵盖身份验证、文件传输、仓库创建、缓存操作及云端计算功能。

查看详情
name:hugging-face-clidescription:"Execute Hugging Face Hub operations using the `hf` CLI. Use when the user needs to download models/datasets/spaces, upload files to Hub repositories, create repos, manage local cache, or run compute jobs on HF infrastructure. Covers authentication, file transfers, repository creation, cache operations, and cloud compute."source:"https://github.com/huggingface/skills/tree/main/skills/hugging-face-cli"risk:safe

Hugging Face CLI

The hf CLI provides direct terminal access to the Hugging Face Hub for downloading, uploading, and managing repositories, cache, and compute resources.

When to Use This Skill

Use this skill when:

  • User needs to download models, datasets, or spaces

  • Uploading files to Hub repositories

  • Creating Hugging Face repositories

  • Managing local cache

  • Running compute jobs on HF infrastructure

  • Working with Hugging Face Hub authentication
  • Quick Command Reference

    TaskCommand
    Loginhf auth login
    Download modelhf download <repo_id>
    Download to folderhf download <repo_id> --local-dir ./path
    Upload folderhf upload <repo_id> . .
    Create repohf repo create <name>
    Create taghf repo tag create <repo_id> <tag>
    Delete fileshf repo-files delete <repo_id> <files>
    List cachehf cache ls
    Remove from cachehf cache rm <repo_or_revision>
    List modelshf models ls
    Get model infohf models info <model_id>
    List datasetshf datasets ls
    Get dataset infohf datasets info <dataset_id>
    List spaceshf spaces ls
    Get space infohf spaces info <space_id>
    List endpointshf endpoints ls
    Run GPU jobhf jobs run --flavor a10g-small <image> <cmd>
    Environment infohf env

    Core Commands

    Authentication


    hf auth login                    # Interactive login
    hf auth login --token $HF_TOKEN # Non-interactive
    hf auth whoami # Check current user
    hf auth list # List stored tokens
    hf auth switch # Switch between tokens
    hf auth logout # Log out

    Download


    hf download <repo_id>                              # Full repo to cache
    hf download <repo_id> file.safetensors # Specific file
    hf download <repo_id> --local-dir ./models # To local directory
    hf download <repo_id> --include ".safetensors" # Filter by pattern
    hf download <repo_id> --repo-type dataset # Dataset
    hf download <repo_id> --revision v1.0 # Specific version

    Upload


    hf upload <repo_id> . .                            # Current dir to root
    hf upload <repo_id> ./models /weights # Folder to path
    hf upload <repo_id> model.safetensors # Single file
    hf upload <repo_id> . . --repo-type dataset # Dataset
    hf upload <repo_id> . . --create-pr # Create PR
    hf upload <repo_id> . . --commit-message="msg" # Custom message

    Repository Management


    hf repo create <name>                              # Create model repo
    hf repo create <name> --repo-type dataset # Create dataset
    hf repo create <name> --private # Private repo
    hf repo create <name> --repo-type space --space_sdk gradio # Gradio space
    hf repo delete <repo_id> # Delete repo
    hf repo move <from_id> <to_id> # Move repo to new namespace
    hf repo settings <repo_id> --private true # Update repo settings
    hf repo list --repo-type model # List repos
    hf repo branch create <repo_id> release-v1 # Create branch
    hf repo branch delete <repo_id> release-v1 # Delete branch
    hf repo tag create <repo_id> v1.0 # Create tag
    hf repo tag list <repo_id> # List tags
    hf repo tag delete <repo_id> v1.0 # Delete tag

    Delete Files from Repo


    hf repo-files delete <repo_id> folder/             # Delete folder
    hf repo-files delete <repo_id> "
    .txt" # Delete with pattern

    Cache Management


    hf cache ls                      # List cached repos
    hf cache ls --revisions # Include individual revisions
    hf cache rm model/gpt2 # Remove cached repo
    hf cache rm <revision_hash> # Remove cached revision
    hf cache prune # Remove detached revisions
    hf cache verify gpt2 # Verify checksums from cache

    Browse Hub


    # Models
    hf models ls # List top trending models
    hf models ls --search "MiniMax" --author MiniMaxAI # Search models
    hf models ls --filter "text-generation" --limit 20 # Filter by task
    hf models info MiniMaxAI/MiniMax-M2.1 # Get model info

    Datasets


    hf datasets ls # List top trending datasets
    hf datasets ls --search "finepdfs" --sort downloads # Search datasets
    hf datasets info HuggingFaceFW/finepdfs # Get dataset info

    Spaces


    hf spaces ls # List top trending spaces
    hf spaces ls --filter "3d" --limit 10 # Filter by 3D modeling spaces
    hf spaces info enzostvs/deepsite # Get space info

    Jobs (Cloud Compute)


    hf jobs run python:3.12 python script.py           # Run on CPU
    hf jobs run --flavor a10g-small <image> <cmd> # Run on GPU
    hf jobs run --secrets HF_TOKEN <image> <cmd> # With HF token
    hf jobs ps # List jobs
    hf jobs logs <job_id> # View logs
    hf jobs cancel <job_id> # Cancel job

    Inference Endpoints


    hf endpoints ls                                     # List endpoints
    hf endpoints deploy my-endpoint \
    --repo openai/gpt-oss-120b \
    --framework vllm \
    --accelerator gpu \
    --instance-size x4 \
    --instance-type nvidia-a10g \
    --region us-east-1 \
    --vendor aws
    hf endpoints describe my-endpoint # Show endpoint details
    hf endpoints pause my-endpoint # Pause endpoint
    hf endpoints resume my-endpoint # Resume endpoint
    hf endpoints scale-to-zero my-endpoint # Scale to zero
    hf endpoints delete my-endpoint --yes # Delete endpoint

    GPU Flavors: cpu-basic, cpu-upgrade, cpu-xl, t4-small, t4-medium, l4x1, l4x4, l40sx1, l40sx4, l40sx8, a10g-small, a10g-large, a10g-largex2, a10g-largex4, a100-large, h100, h100x8

    Common Patterns

    Download and Use Model Locally


    # Download to local directory for deployment
    hf download meta-llama/Llama-3.2-1B-Instruct --local-dir ./model

    Or use cache and get path


    MODEL_PATH=$(hf download meta-llama/Llama-3.2-1B-Instruct --quiet)

    Publish Model/Dataset


    hf repo create my-username/my-model --private
    hf upload my-username/my-model ./output . --commit-message="Initial release"
    hf repo tag create my-username/my-model v1.0

    Sync Space with Local


    hf upload my-username/my-space . . --repo-type space \
    --exclude="logs/" --delete="" --commit-message="Sync"

    Check Cache Usage


    hf cache ls                      # See all cached repos and sizes
    hf cache rm model/gpt2 # Remove a repo from cache

    Key Options

  • --repo-type: model (default), dataset, space

  • --revision: Branch, tag, or commit hash

  • --token: Override authentication

  • --quiet: Output only essential info (paths/URLs)
  • References

  • Complete command reference: See references/commands.md

  • Workflow examples: See references/examples.md

    1. hugging-face-cli - Agent Skills