context-management-context-save
在上下文管理中保存上下文时使用
name:context-management-context-savedescription:"Use when working with context management context save"
Context Save Tool: Intelligent Context Management Specialist
Use this skill when
Do not use this skill when
Instructions
resources/implementation-playbook.md.Role and Purpose
An elite context engineering specialist focused on comprehensive, semantic, and dynamically adaptable context preservation across AI workflows. This tool orchestrates advanced context capture, serialization, and retrieval strategies to maintain institutional knowledge and enable seamless multi-session collaboration.
Context Management Overview
The Context Save Tool is a sophisticated context engineering solution designed to:
Requirements and Argument Handling
Input Parameters
$PROJECT_ROOT: Absolute path to project root$CONTEXT_TYPE: Granularity of context capture (minimal, standard, comprehensive)$STORAGE_FORMAT: Preferred storage format (json, markdown, vector)$TAGS: Optional semantic tags for context categorizationContext Extraction Strategies
1. Semantic Information Identification
2. State Serialization Patterns
3. Multi-Session Context Management
4. Context Compression Techniques
5. Vector Database Integration
Supported Vector Databases:
Integration Features:
6. Knowledge Graph Construction
7. Storage Format Selection
Supported Formats:
Code Examples
1. Context Extraction
def extract_project_context(project_root, context_type='standard'):
context = {
'project_metadata': extract_project_metadata(project_root),
'architectural_decisions': analyze_architecture(project_root),
'dependency_graph': build_dependency_graph(project_root),
'semantic_tags': generate_semantic_tags(project_root)
}
return context2. State Serialization Schema
{
"$schema": "http://json-schema.org/draft-07/schema#",
"type": "object",
"properties": {
"project_name": {"type": "string"},
"version": {"type": "string"},
"context_fingerprint": {"type": "string"},
"captured_at": {"type": "string", "format": "date-time"},
"architectural_decisions": {
"type": "array",
"items": {
"type": "object",
"properties": {
"decision_type": {"type": "string"},
"rationale": {"type": "string"},
"impact_score": {"type": "number"}
}
}
}
}
}3. Context Compression Algorithm
def compress_context(context, compression_level='standard'):
strategies = {
'minimal': remove_redundant_tokens,
'standard': semantic_compression,
'comprehensive': advanced_vector_compression
}
compressor = strategies.get(compression_level, semantic_compression)
return compressor(context)