code-refactoring-context-restore

用于代码重构上下文还原时使用

查看详情
name:code-refactoring-context-restoredescription:"Use when working with code refactoring context restore"

Context Restoration: Advanced Semantic Memory Rehydration

Use this skill when

  • Working on context restoration: advanced semantic memory rehydration tasks or workflows

  • Needing guidance, best practices, or checklists for context restoration: advanced semantic memory rehydration
  • Do not use this skill when

  • The task is unrelated to context restoration: advanced semantic memory rehydration

  • You need a different domain or tool outside this scope
  • Instructions

  • Clarify goals, constraints, and required inputs.

  • Apply relevant best practices and validate outcomes.

  • Provide actionable steps and verification.

  • If detailed examples are required, open resources/implementation-playbook.md.
  • Role Statement

    Expert Context Restoration Specialist focused on intelligent, semantic-aware context retrieval and reconstruction across complex multi-agent AI workflows. Specializes in preserving and reconstructing project knowledge with high fidelity and minimal information loss.

    Context Overview

    The Context Restoration tool is a sophisticated memory management system designed to:

  • Recover and reconstruct project context across distributed AI workflows

  • Enable seamless continuity in complex, long-running projects

  • Provide intelligent, semantically-aware context rehydration

  • Maintain historical knowledge integrity and decision traceability
  • Core Requirements and Arguments

    Input Parameters


  • context_source: Primary context storage location (vector database, file system)

  • project_identifier: Unique project namespace

  • restoration_mode:

  • - full: Complete context restoration
    - incremental: Partial context update
    - diff: Compare and merge context versions
  • token_budget: Maximum context tokens to restore (default: 8192)

  • relevance_threshold: Semantic similarity cutoff for context components (default: 0.75)
  • Advanced Context Retrieval Strategies

    1. Semantic Vector Search


  • Utilize multi-dimensional embedding models for context retrieval

  • Employ cosine similarity and vector clustering techniques

  • Support multi-modal embedding (text, code, architectural diagrams)
  • def semantic_context_retrieve(project_id, query_vector, top_k=5):
    """Semantically retrieve most relevant context vectors"""
    vector_db = VectorDatabase(project_id)
    matching_contexts = vector_db.search(
    query_vector,
    similarity_threshold=0.75,
    max_results=top_k
    )
    return rank_and_filter_contexts(matching_contexts)

    2. Relevance Filtering and Ranking


  • Implement multi-stage relevance scoring

  • Consider temporal decay, semantic similarity, and historical impact

  • Dynamic weighting of context components
  • def rank_context_components(contexts, current_state):
    """Rank context components based on multiple relevance signals"""
    ranked_contexts = []
    for context in contexts:
    relevance_score = calculate_composite_score(
    semantic_similarity=context.semantic_score,
    temporal_relevance=context.age_factor,
    historical_impact=context.decision_weight
    )
    ranked_contexts.append((context, relevance_score))

    return sorted(ranked_contexts, key=lambda x: x[1], reverse=True)

    3. Context Rehydration Patterns


  • Implement incremental context loading

  • Support partial and full context reconstruction

  • Manage token budgets dynamically
  • def rehydrate_context(project_context, token_budget=8192):
    """Intelligent context rehydration with token budget management"""
    context_components = [
    'project_overview',
    'architectural_decisions',
    'technology_stack',
    'recent_agent_work',
    'known_issues'
    ]

    prioritized_components = prioritize_components(context_components)
    restored_context = {}

    current_tokens = 0
    for component in prioritized_components:
    component_tokens = estimate_tokens(component)
    if current_tokens + component_tokens <= token_budget:
    restored_context[component] = load_component(component)
    current_tokens += component_tokens

    return restored_context

    4. Session State Reconstruction


  • Reconstruct agent workflow state

  • Preserve decision trails and reasoning contexts

  • Support multi-agent collaboration history
  • 5. Context Merging and Conflict Resolution


  • Implement three-way merge strategies

  • Detect and resolve semantic conflicts

  • Maintain provenance and decision traceability
  • 6. Incremental Context Loading


  • Support lazy loading of context components

  • Implement context streaming for large projects

  • Enable dynamic context expansion
  • 7. Context Validation and Integrity Checks


  • Cryptographic context signatures

  • Semantic consistency verification

  • Version compatibility checks
  • 8. Performance Optimization


  • Implement efficient caching mechanisms

  • Use probabilistic data structures for context indexing

  • Optimize vector search algorithms
  • Reference Workflows

    Workflow 1: Project Resumption


  • Retrieve most recent project context

  • Validate context against current codebase

  • Selectively restore relevant components

  • Generate resumption summary
  • Workflow 2: Cross-Project Knowledge Transfer


  • Extract semantic vectors from source project

  • Map and transfer relevant knowledge

  • Adapt context to target project's domain

  • Validate knowledge transferability
  • Usage Examples

    # Full context restoration
    context-restore project:ai-assistant --mode full

    Incremental context update


    context-restore project:web-platform --mode incremental

    Semantic context query


    context-restore project:ml-pipeline --query "model training strategy"

    Integration Patterns


  • RAG (Retrieval Augmented Generation) pipelines

  • Multi-agent workflow coordination

  • Continuous learning systems

  • Enterprise knowledge management
  • Future Roadmap


  • Enhanced multi-modal embedding support

  • Quantum-inspired vector search algorithms

  • Self-healing context reconstruction

  • Adaptive learning context strategies