Multi-agent orchestration patterns. Use when multiple independent tasks can run with different domain expertise or when comprehensive analysis requires multiple perspectives.
Deep generative models for single-cell omics. Use when you need probabilistic batch correction (scVI), transfer learning, differential expression with uncertainty, or multi-modal integration (TOTALVI, MultiVI). Best for advanced modeling, batch effects, multimodal data. For standard analysis pipelines use scanpy.
Transforms user prompts into optimized prompts using frameworks (RTF, RISEN, Chain of Thought, RODES, Chain of Density, RACE, RISE, STAR, SOAP, CLEAR, GROW)
Expert guide on prompt engineering patterns, best practices, and optimization techniques. Use when user wants to improve prompts, learn prompting strategies, or debug agent behavior.
Curated collection of high-quality prompts for various use cases. Includes role-based prompts, task-specific templates, and prompt refinement techniques. Use when user needs prompt templates, role-play prompts, or ready-to-use prompt examples for coding, writing, analysis, or creative tasks.
Master advanced prompt engineering techniques to maximize LLM performance, reliability, and controllability in production. Use when optimizing prompts, improving LLM outputs, or designing production prompt templates.
Model interpretability and explainability using SHAP (SHapley Additive exPlanations). Use this skill when explaining machine learning model predictions, computing feature importance, generating SHAP plots (waterfall, beeswarm, bar, scatter, force, heatmap), debugging models, analyzing model bias or fairness, comparing models, or implementing explainable AI. Works with tree-based models (XGBoost, LightGBM, Random Forest), deep learning (TensorFlow, PyTorch), linear models, and any black-box model.
Expert in building Retrieval-Augmented Generation systems. Masters embedding models, vector databases, chunking strategies, and retrieval optimization for LLM applications. Use when: building RAG, vector search, embeddings, semantic search, document retrieval.
Build Retrieval-Augmented Generation (RAG) systems for LLM applications with vector databases and semantic search. Use when implementing knowledge-grounded AI, building document Q&A systems, or integrating LLMs with external knowledge bases.
Implement efficient similarity search with vector databases. Use when building semantic search, implementing nearest neighbor queries, or optimizing retrieval performance.
Create and manage Claude Code skills following Anthropic best practices. Use when creating new skills, modifying skill-rules.json, understanding trigger patterns, working with hooks, debugging skill activation, or implementing progressive disclosure. Covers skill structure, YAML frontmatter, trigger types (keywords, intent patterns, file paths, content patterns), enforcement levels (block, suggest, warn), hook mechanisms (UserPromptSubmit, PreToolUse), session tracking, and the 500-line rule.
-Automatically convert documentation websites, GitHub repositories, and PDFs into Claude AI skills in minutes.
Lab environment for Claude superpowers
Use when creating, updating, or improving agent skills.
Voice agents represent the frontier of AI interaction - humans speaking naturally with AI systems. The challenge isn't just speech recognition and synthesis, it's achieving natural conversation flow with sub-800ms latency while handling interruptions, background noise, and emotional nuance. This skill covers two architectures: speech-to-speech (OpenAI Realtime API, lowest latency, most natural) and pipeline (STT→LLM→TTS, more control, easier to debug). Key insight: latency is the constraint. Hu
Build real-time conversational AI voice engines using async worker pipelines, streaming transcription, LLM agents, and TTS synthesis with interrupt handling and multi-provider support
Expert in building voice AI applications - from real-time voice agents to voice-enabled apps. Covers OpenAI Realtime API, Vapi for voice agents, Deepgram for transcription, ElevenLabs for synthesis, LiveKit for real-time infrastructure, and WebRTC fundamentals. Knows how to build low-latency, production-ready voice experiences. Use when: voice ai, voice agent, speech to text, text to speech, realtime voice.
A skill that creates new Claude skills and automatically shares them on Slack using Rube for seamless team collaboration and skill discovery.