Build AI agents and apps with Composio - access 200+ external tools with Tool Router or direct execution
Understand what context is, why it matters, and the anatomy of context in agent systems
A hybrid memory system that provides persistent, searchable knowledge management for AI agents (Architecture, Patterns, Decisions).
Systematic improvement of existing agents through performance analysis, prompt engineering, and continuous iteration.
Every product will be AI-powered. The question is whether you'll build it right or ship a demo that falls apart in production. This skill covers LLM integration patterns, RAG architecture, prompt engineering that scales, AI UX that users trust, and cost optimization that doesn't bankrupt you. Use when: keywords, file_patterns, code_patterns.
Elite AI context engineering specialist mastering dynamic context management, vector databases, knowledge graphs, and intelligent memory systems. Orchestrates context across multi-agent workflows, enterprise AI systems, and long-running projects with 2024/2025 best practices. Use PROACTIVELY for complex AI orchestration.
Guide for creating effective skills. This skill should be used when users want to create a new skill (or update an existing skill) that extends Claude's capabilities with specialized knowledge, workflows, or tool integrations.
Memory is the cornerstone of intelligent agents. Without it, every interaction starts from zero. This skill covers the architecture of agent memory: short-term (context window), long-term (vector stores), and the cognitive architectures that organize them. Key insight: Memory isn't just storage - it's retrieval. A million stored facts mean nothing if you can't find the right one. Chunking, embedding, and retrieval strategies determine whether your agent remembers or forgets. The field is fragm
Guide for creating effective skills. This skill should be used when users want to create a new skill (or update an existing skill) that extends Claude's capabilities with specialized knowledge, workflows, or tool integrations.
This skill should be used for time series machine learning tasks including classification, regression, clustering, forecasting, anomaly detection, segmentation, and similarity search. Use when working with temporal data, sequential patterns, or time-indexed observations requiring specialized algorithms beyond standard ML approaches. Particularly suited for univariate and multivariate time series analysis with scikit-learn compatible APIs.
Access AlphaFold 200M+ AI-predicted protein structures. Retrieve structures by UniProt ID, download PDB/mmCIF files, analyze confidence metrics (pLDDT, PAE), for drug discovery and structural biology.
Molecular ML with diverse featurizers and pre-built datasets. Use for property prediction (ADMET, toxicity) with traditional ML or GNNs when you want extensive featurization options and MoleculeNet benchmarks. Best for quick experiments with pre-trained models, diverse molecular representations. For graph-first PyTorch workflows use torchdrug; for benchmark datasets use pytdc.
Multiagent AI system for scientific research assistance that automates research workflows from data analysis to publication. This skill should be used when generating research ideas from datasets, developing research methodologies, executing computational experiments, performing literature searches, or generating publication-ready papers in LaTeX format. Supports end-to-end research pipelines with customizable agent orchestration.
Query and download public cancer imaging data from NCI Imaging Data Commons using idc-index. Use for accessing large-scale radiology (CT, MR, PET) and pathology datasets for AI training or research. No authentication required. Query by metadata, visualize in browser, check licenses.
Expert in designing and building autonomous AI agents. Masters tool use, memory systems, planning strategies, and multi-agent orchestration. Use when: build agent, AI agent, autonomous agent, tool use, function calling.
Perform AI-powered web searches with real-time information using Perplexity models via LiteLLM and OpenRouter. This skill should be used when conducting web searches for current information, finding recent scientific literature, getting grounded answers with source citations, or accessing information beyond the model knowledge cutoff. Provides access to multiple Perplexity models including Sonar Pro, Sonar Pro Search (advanced agentic search), and Sonar Reasoning Pro through a single OpenRouter API key.
High-performance reinforcement learning framework optimized for speed and scale. Use when you need fast parallel training, vectorized environments, multi-agent systems, or integration with game environments (Atari, Procgen, NetHack). Achieves 2-10x speedups over standard implementations. For quick prototyping or standard algorithm implementations with extensive documentation, use stable-baselines3 instead.
Multi-objective optimization framework. NSGA-II, NSGA-III, MOEA/D, Pareto fronts, constraint handling, benchmarks (ZDT, DTLZ), for engineering design and optimization problems.