audio-transcriber

Transform audio recordings into professional Markdown documentation with intelligent summaries using LLM integration

View Source
name:audio-transcriberdescription:"Transform audio recordings into professional Markdown documentation with intelligent summaries using LLM integration"version:1.2.0author:Eric Andradecreated:2025-02-01updated:2026-02-04platforms:[github-copilot-cli, claude-code, codex]category:contenttags:[audio, transcription, whisper, meeting-minutes, speech-to-text]risk:safe

Purpose

This skill automates audio-to-text transcription with professional Markdown output, extracting rich technical metadata (speakers, timestamps, language, file size, duration) and generating structured meeting minutes and executive summaries. It uses Faster-Whisper or Whisper with zero configuration, working universally across projects without hardcoded paths or API keys.

Inspired by tools like Plaud, this skill transforms raw audio recordings into actionable documentation, making it ideal for meetings, interviews, lectures, and content analysis.

When to Use

Invoke this skill when:

  • User needs to transcribe audio/video files to text

  • User wants meeting minutes automatically generated from recordings

  • User requires speaker identification (diarization) in conversations

  • User needs subtitles/captions (SRT, VTT formats)

  • User wants executive summaries of long audio content

  • User asks variations of "transcribe this audio", "convert audio to text", "generate meeting notes from recording"

  • User has audio files in common formats (MP3, WAV, M4A, OGG, FLAC, WEBM)
  • Workflow

    Step 0: Discovery (Auto-detect Transcription Tools)

    Objective: Identify available transcription engines without user configuration.

    Actions:

    Run detection commands to find installed tools:

    # Check for Faster-Whisper (preferred - 4-5x faster)
    if python3 -c "import faster_whisper" 2>/dev/null; then
    TRANSCRIBER="faster-whisper"
    echo "✅ Faster-Whisper detected (optimized)"

    Fallback to original Whisper


    elif python3 -c "import whisper" 2>/dev/null; then
    TRANSCRIBER="whisper"
    echo "✅ OpenAI Whisper detected"
    else
    TRANSCRIBER="none"
    echo "⚠️ No transcription tool found"
    fi

    Check for ffmpeg (audio format conversion)


    if command -v ffmpeg &>/dev/null; then
    echo "✅ ffmpeg available (format conversion enabled)"
    else
    echo "ℹ️ ffmpeg not found (limited format support)"
    fi

    If no transcriber found:

    Offer automatic installation using the provided script:

    echo "⚠️  No transcription tool found"
    echo ""
    echo "🔧 Auto-install dependencies? (Recommended)"
    read -p "Run installation script? [Y/n]: " AUTO_INSTALL

    if [[ ! "$AUTO_INSTALL" =~ ^[Nn] ]]; then
    # Get skill directory (works for both repo and symlinked installations)
    SKILL_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"

    # Run installation script
    if [[ -f "$SKILL_DIR/scripts/install-requirements.sh" ]]; then
    bash "$SKILL_DIR/scripts/install-requirements.sh"
    else
    echo "❌ Installation script not found"
    echo ""
    echo "📦 Manual installation:"
    echo " pip install faster-whisper # Recommended"
    echo " pip install openai-whisper # Alternative"
    echo " brew install ffmpeg # Optional (macOS)"
    exit 1
    fi

    # Verify installation succeeded
    if python3 -c "import faster_whisper" 2>/dev/null || python3 -c "import whisper" 2>/dev/null; then
    echo "✅ Installation successful! Proceeding with transcription..."
    else
    echo "❌ Installation failed. Please install manually."
    exit 1
    fi
    else
    echo ""
    echo "📦 Manual installation required:"
    echo ""
    echo "Recommended (fastest):"
    echo " pip install faster-whisper"
    echo ""
    echo "Alternative (original):"
    echo " pip install openai-whisper"
    echo ""
    echo "Optional (format conversion):"
    echo " brew install ffmpeg # macOS"
    echo " apt install ffmpeg # Linux"
    echo ""
    exit 1
    fi

    This ensures users can install dependencies with one confirmation, or opt for manual installation if preferred.

    If transcriber found:

    Proceed to Step 0b (CLI Detection).


    Step 1: Validate Audio File

    Objective: Verify file exists, check format, and extract metadata.

    Actions:

  • Accept file path or URL from user:

  • - Local file: meeting.mp3
    - URL: https://example.com/audio.mp3 (download to temp directory)

  • Verify file exists:
  • if [[ ! -f "$AUDIO_FILE" ]]; then
    echo "❌ File not found: $AUDIO_FILE"
    exit 1
    fi

  • Extract metadata using ffprobe or file utilities:
  • # Get file size
    FILE_SIZE=$(du -h "$AUDIO_FILE" | cut -f1)

    Get duration and format using ffprobe


    DURATION=$(ffprobe -v error -show_entries format=duration \
    -of default=noprint_wrappers=1:nokey=1 "$AUDIO_FILE" 2>/dev/null)
    FORMAT=$(ffprobe -v error -select_streams a:0 -show_entries \
    stream=codec_name -of default=noprint_wrappers=1:nokey=1 "$AUDIO_FILE" 2>/dev/null)

    Convert duration to HH:MM:SS


    DURATION_HMS=$(date -u -r "$DURATION" +%H:%M:%S 2>/dev/null || echo "Unknown")

  • Check file size (warn if large for cloud APIs):
  • SIZE_MB=$(du -m "$AUDIO_FILE" | cut -f1)
    if [[ $SIZE_MB -gt 25 ]]; then
    echo "⚠️ Large file ($FILE_SIZE) - processing may take several minutes"
    fi

  • Validate format (supported: MP3, WAV, M4A, OGG, FLAC, WEBM):
  • EXTENSION="${AUDIO_FILE##.}"
    SUPPORTED_FORMATS=("mp3" "wav" "m4a" "ogg" "flac" "webm" "mp4")

    if [[ ! " ${SUPPORTED_FORMATS[@]} " =~ " ${EXTENSION,,} " ]]; then
    echo "⚠️ Unsupported format: $EXTENSION"
    if command -v ffmpeg &>/dev/null; then
    echo "🔄 Converting to WAV..."
    ffmpeg -i "$AUDIO_FILE" -ar 16000 "${AUDIO_FILE%.
    }.wav" -y
    AUDIO_FILE="${AUDIO_FILE%.}.wav"
    else
    echo "❌ Install ffmpeg to convert formats: brew install ffmpeg"
    exit 1
    fi
    fi


    Step 3: Generate Markdown Output

    Objective: Create structured Markdown with metadata, transcription, meeting minutes, and summary.

    Output Template:

    # Audio Transcription Report

    📊 Metadata

    <div class="overflow-x-auto my-6"><table class="min-w-full divide-y divide-border border border-border"><thead><tr><th class="px-4 py-2 text-left text-sm font-semibold text-foreground bg-muted/50">Field</th><th class="px-4 py-2 text-left text-sm font-semibold text-foreground bg-muted/50">Value</th></tr></thead><tbody class="divide-y divide-border"><tr><td class="px-4 py-2 text-sm text-foreground"><strong>File Name</strong></td><td class="px-4 py-2 text-sm text-foreground">{filename}</td></tr><tr><td class="px-4 py-2 text-sm text-foreground"><strong>File Size</strong></td><td class="px-4 py-2 text-sm text-foreground">{file_size}</td></tr><tr><td class="px-4 py-2 text-sm text-foreground"><strong>Duration</strong></td><td class="px-4 py-2 text-sm text-foreground">{duration_hms}</td></tr><tr><td class="px-4 py-2 text-sm text-foreground"><strong>Language</strong></td><td class="px-4 py-2 text-sm text-foreground">{language} ({language_code})</td></tr><tr><td class="px-4 py-2 text-sm text-foreground"><strong>Processed Date</strong></td><td class="px-4 py-2 text-sm text-foreground">{process_date}</td></tr><tr><td class="px-4 py-2 text-sm text-foreground"><strong>Speakers Identified</strong></td><td class="px-4 py-2 text-sm text-foreground">{num_speakers}</td></tr><tr><td class="px-4 py-2 text-sm text-foreground"><strong>Transcription Engine</strong></td><td class="px-4 py-2 text-sm text-foreground">{engine} (model: {model})</td></tr></tbody></table></div>


    📋 Meeting Minutes

    Participants


  • {speaker_1}

  • {speaker_2}

  • ...
  • Topics Discussed


  • {topic_1} ({timestamp})

  • - {key_point_1}
    - {key_point_2}

  • {topic_2} ({timestamp})

  • - {key_point_1}

    Decisions Made


  • ✅ {decision_1}

  • ✅ {decision_2}
  • Action Items


  • [ ] {action_1} - Assigned to: {speaker} - Due: {date_if_mentioned}

  • [ ] {action_2} - Assigned to: {speaker}

  • Generated by audio-transcriber skill v1.0.0
    Transcription engine: {engine} | Processing time: {elapsed_time}s

    Implementation:

    Use Python or bash with AI model (Claude/GPT) for intelligent summarization:

    def generate_meeting_minutes(segments):
    """Extract topics, decisions, action items from transcription."""

    # Group segments by topic (simple clustering by timestamps)
    topics = cluster_by_topic(segments)

    # Identify action items (keywords: "should", "will", "need to", "action")
    action_items = extract_action_items(segments)

    # Identify decisions (keywords: "decided", "agreed", "approved")
    decisions = extract_decisions(segments)

    return {
    "topics": topics,
    "decisions": decisions,
    "action_items": action_items
    }

    def generate_summary(segments, max_paragraphs=5):
    """Create executive summary using AI (Claude/GPT via API or local model)."""

    full_text = " ".join([s["text"] for s in segments])

    # Use Chain of Density approach (from prompt-engineer frameworks)
    summary_prompt = f"""
    Summarize the following transcription in {max_paragraphs} concise paragraphs.
    Focus on key topics, decisions, and action items.

    Transcription:
    {full_text}
    """

    # Call AI model (placeholder - user can integrate Claude API or use local model)
    summary = call_ai_model(summary_prompt)

    return summary

    Output file naming:

    # v1.1.0: Use timestamp para evitar sobrescrever
    TIMESTAMP=$(date +%Y%m%d-%H%M%S)
    TRANSCRIPT_FILE="transcript-${TIMESTAMP}.md"
    ATA_FILE="ata-${TIMESTAMP}.md"

    echo "$TRANSCRIPT_CONTENT" > "$TRANSCRIPT_FILE"
    echo "✅ Transcript salvo: $TRANSCRIPT_FILE"

    if [[ -n "$ATA_CONTENT" ]]; then
    echo "$ATA_CONTENT" > "$ATA_FILE"
    echo "✅ Ata salva: $ATA_FILE"
    fi


    SCENARIO A: User Provided Custom Prompt

    Workflow:

  • Display user's prompt:

  • 📝 Prompt fornecido pelo usuário:
    ┌──────────────────────────────────┐
    │ [User's prompt preview] │
    └──────────────────────────────────┘

  • Automatically improve with prompt-engineer (if available):

  • 🔧 Melhorando prompt com prompt-engineer...
    [Invokes: gh copilot -p "melhore este prompt: {user_prompt}"]

  • Show both versions:

  • ✨ Versão melhorada:
    ┌──────────────────────────────────┐
    │ Role: Você é um documentador... │
    │ Instructions: Transforme... │
    │ Steps: 1) ... 2) ... │
    │ End Goal: ... │
    └──────────────────────────────────┘

    📝 Versão original:
    ┌──────────────────────────────────┐
    │ [User's original prompt] │
    └──────────────────────────────────┘

  • Ask which to use:

  • 💡 Usar versão melhorada? [s/n] (default: s):

  • Process with selected prompt:

  • - If "s": use improved
    - If "n": use original


    LLM Processing (Both Scenarios)

    Once prompt is finalized:

    from rich.progress import Progress, SpinnerColumn, TextColumn

    def process_with_llm(transcript, prompt, cli_tool='claude'):
    full_prompt = f"{prompt}\n\n---\n\nTranscrição:\n\n{transcript}"

    with Progress(
    SpinnerColumn(),
    TextColumn("[progress.description]{task.description}"),
    transient=True
    ) as progress:
    progress.add_task(
    description=f"🤖 Processando com {cli_tool}...",
    total=None
    )

    if cli_tool == 'claude':
    result = subprocess.run(
    ['claude', '-'],
    input=full_prompt,
    capture_output=True,
    text=True,
    timeout=300 # 5 minutes
    )
    elif cli_tool == 'gh-copilot':
    result = subprocess.run(
    ['gh', 'copilot', 'suggest', '-t', 'shell', full_prompt],
    capture_output=True,
    text=True,
    timeout=300
    )

    if result.returncode == 0:
    return result.stdout.strip()
    else:
    return None

    Progress output:

    🤖 Processando com claude... ⠋
    [After completion:]
    ✅ Ata gerada com sucesso!


    Final Output

    Success (both files):

    💾 Salvando arquivos...

    ✅ Arquivos criados:
    - transcript-20260203-023045.md (transcript puro)
    - ata-20260203-023045.md (processado com LLM)

    🧹 Removidos arquivos temporários: metadata.json, transcription.json

    ✅ Concluído! Tempo total: 3m 45s

    Transcript only (user declined LLM):

    💾 Salvando arquivos...

    ✅ Arquivo criado:
    - transcript-20260203-023045.md

    ℹ️ Ata não gerada (processamento LLM recusado pelo usuário)

    🧹 Removidos arquivos temporários: metadata.json, transcription.json

    ✅ Concluído!


    Step 5: Display Results Summary

    Objective: Show completion status and next steps.

    Output:

    echo ""
    echo "✅ Transcription Complete!"
    echo ""
    echo "📊 Results:"
    echo " File: $OUTPUT_FILE"
    echo " Language: $LANGUAGE"
    echo " Duration: $DURATION_HMS"
    echo " Speakers: $NUM_SPEAKERS"
    echo " Words: $WORD_COUNT"
    echo " Processing time: ${ELAPSED_TIME}s"
    echo ""
    echo "📝 Generated:"
    echo " - $OUTPUT_FILE (Markdown report)"
    [if alternative formats:]
    echo " - ${OUTPUT_FILE%.
    }.srt (Subtitles)"
    echo " - ${OUTPUT_FILE%.}.json (Structured data)"
    echo ""
    echo "🎯 Next steps:"
    echo " 1. Review meeting minutes and action items"
    echo " 2. Share report with participants"
    echo " 3. Track action items to completion"


    Example Usage

    Example 1: Basic Transcription

    User Input:

    copilot> transcribe audio to markdown: meeting-2026-02-02.mp3

    Skill Output:

    ✅ Faster-Whisper detected (optimized)
    ✅ ffmpeg available (format conversion enabled)

    📂 File: meeting-2026-02-02.mp3
    📊 Size: 12.3 MB
    ⏱️ Duration: 00:45:32

    🎙️ Processing...
    [████████████████████] 100%

    ✅ Language detected: Portuguese (pt-BR)
    👥 Speakers identified: 4
    📝 Generating Markdown output...

    ✅ Transcription Complete!

    📊 Results:
    File: meeting-2026-02-02.md
    Language: pt-BR
    Duration: 00:45:32
    Speakers: 4
    Words: 6,842
    Processing time: 127s

    📝 Generated:
    - meeting-2026-02-02.md (Markdown report)

    🎯 Next steps:
    1. Review meeting minutes and action items
    2. Share report with participants
    3. Track action items to completion


    Example 3: Batch Processing

    User Input:

    copilot> transcreva estes áudios: recordings/.mp3

    Skill Output:

    📦 Batch mode: 5 files found
    1. team-standup.mp3
    2. client-call.mp3
    3. brainstorm-session.mp3
    4. product-demo.mp3
    5. retrospective.mp3

    🎙️ Processing batch...

    [1/5] team-standup.mp3 ✅ (2m 34s)
    [2/5] client-call.mp3 ✅ (15m 12s)
    [3/5] brainstorm-session.mp3 ✅ (8m 47s)
    [4/5] product-demo.mp3 ✅ (22m 03s)
    [5/5] retrospective.mp3 ✅ (11m 28s)

    ✅ Batch Complete!
    📝 Generated 5 Markdown reports
    ⏱️ Total processing time: 6m 15s


    Example 5: Large File Warning

    User Input:

    copilot> transcribe audio to markdown: conference-keynote.mp3

    Skill Output:

    ✅ Faster-Whisper detected (optimized)

    📂 File: conference-keynote.mp3
    📊 Size: 87.2 MB
    ⏱️ Duration: 02:15:47
    ⚠️ Large file (87.2 MB) - processing may take several minutes

    Continue? [Y/n]:

    User: Y

    🎙️  Processing... (this may take 10-15 minutes)
    [████░░░░░░░░░░░░░░░░] 20% - Estimated time remaining: 12m


    This skill is platform-agnostic and works in any terminal context where GitHub Copilot CLI is available. It does not depend on specific project configurations or external APIs, following the zero-configuration philosophy.