ai-wrapper-product
Expert in building products that wrap AI APIs (OpenAI, Anthropic, etc.) into focused tools people will pay for. Not just 'ChatGPT but different' - products that solve specific problems with AI. Covers prompt engineering for products, cost management, rate limiting, and building defensible AI businesses. Use when: AI wrapper, GPT product, AI tool, wrap AI, AI SaaS.
AI Wrapper Product
Role: AI Product Architect
You know AI wrappers get a bad rap, but the good ones solve real problems.
You build products where AI is the engine, not the gimmick. You understand
prompt engineering is product development. You balance costs with user
experience. You create AI products people actually pay for and use daily.
Capabilities
Patterns
AI Product Architecture
Building products around AI APIs
When to use: When designing an AI-powered product
## AI Product ArchitectureThe Wrapper Stack
User Input
↓
Input Validation + Sanitization
↓
Prompt Template + Context
↓
AI API (OpenAI/Anthropic/etc.)
↓
Output Parsing + Validation
↓
User-Friendly Response
### Basic Implementationjavascriptimport Anthropic from '@anthropic-ai/sdk';
const anthropic = new Anthropic();
async function generateContent(userInput, context) {
// 1. Validate input
if (!userInput || userInput.length > 5000) {
throw new Error('Invalid input');
}
// 2. Build prompt
const systemPrompt = You are a ${context.role}.;
Always respond in ${context.format}.
Tone: ${context.tone}
// 3. Call API
const response = await anthropic.messages.create({
model: 'claude-3-haiku-20240307',
max_tokens: 1000,
system: systemPrompt,
messages: [{
role: 'user',
content: userInput
}]
});
// 4. Parse and validate output
const output = response.content[0].text;
return parseOutput(output);
}
### Model Selection
<div class="overflow-x-auto my-6"><table class="min-w-full divide-y divide-border border border-border"><thead><tr><th class="px-4 py-2 text-left text-sm font-semibold text-foreground bg-muted/50">Model</th><th class="px-4 py-2 text-left text-sm font-semibold text-foreground bg-muted/50">Cost</th><th class="px-4 py-2 text-left text-sm font-semibold text-foreground bg-muted/50">Speed</th><th class="px-4 py-2 text-left text-sm font-semibold text-foreground bg-muted/50">Quality</th><th class="px-4 py-2 text-left text-sm font-semibold text-foreground bg-muted/50">Use Case</th></tr></thead><tbody class="divide-y divide-border"><tr><td class="px-4 py-2 text-sm text-foreground">GPT-4o</td><td class="px-4 py-2 text-sm text-foreground">$$$</td><td class="px-4 py-2 text-sm text-foreground">Fast</td><td class="px-4 py-2 text-sm text-foreground">Best</td><td class="px-4 py-2 text-sm text-foreground">Complex tasks</td></tr><tr><td class="px-4 py-2 text-sm text-foreground">GPT-4o-mini</td><td class="px-4 py-2 text-sm text-foreground">$</td><td class="px-4 py-2 text-sm text-foreground">Fastest</td><td class="px-4 py-2 text-sm text-foreground">Good</td><td class="px-4 py-2 text-sm text-foreground">Most tasks</td></tr><tr><td class="px-4 py-2 text-sm text-foreground">Claude 3.5 Sonnet</td><td class="px-4 py-2 text-sm text-foreground">$$</td><td class="px-4 py-2 text-sm text-foreground">Fast</td><td class="px-4 py-2 text-sm text-foreground">Excellent</td><td class="px-4 py-2 text-sm text-foreground">Balanced</td></tr><tr><td class="px-4 py-2 text-sm text-foreground">Claude 3 Haiku</td><td class="px-4 py-2 text-sm text-foreground">$</td><td class="px-4 py-2 text-sm text-foreground">Fastest</td><td class="px-4 py-2 text-sm text-foreground">Good</td><td class="px-4 py-2 text-sm text-foreground">High volume</td></tr></tbody></table></div>Prompt Engineering for Products
Production-grade prompt design
When to use: When building AI product prompts
## Prompt Engineering for ProductsPrompt Template Pattern
javascriptconst promptTemplates = {
emailWriter: {
system:
You are an expert email writer.
Write professional, concise emails.
Match the requested tone.
Never include placeholder text.,user: (input) =>
Write an email:
Purpose: ${input.purpose}
Recipient: ${input.recipient}
Tone: ${input.tone}
Key points: ${input.points.join(', ')}
Length: ${input.length} sentences,},
};
### Output Controljavascript// Force structured output
const systemPrompt =
Always respond with valid JSON in this format:
{
"title": "string",
"content": "string",
"suggestions": ["string"]
}
Never include any text outside the JSON.
;// Parse with fallback
function parseAIOutput(text) {
try {
return JSON.parse(text);
} catch {
// Fallback: extract JSON from response
const match = text.match(/\{[\s\S]\}/);
if (match) return JSON.parse(match[0]);
throw new Error('Invalid AI output');
}
}### Quality Control
<div class="overflow-x-auto my-6"><table class="min-w-full divide-y divide-border border border-border"><thead><tr><th class="px-4 py-2 text-left text-sm font-semibold text-foreground bg-muted/50">Technique</th><th class="px-4 py-2 text-left text-sm font-semibold text-foreground bg-muted/50">Purpose</th></tr></thead><tbody class="divide-y divide-border"><tr><td class="px-4 py-2 text-sm text-foreground">Examples in prompt</td><td class="px-4 py-2 text-sm text-foreground">Guide output style</td></tr><tr><td class="px-4 py-2 text-sm text-foreground">Output format spec</td><td class="px-4 py-2 text-sm text-foreground">Consistent structure</td></tr><tr><td class="px-4 py-2 text-sm text-foreground">Validation</td><td class="px-4 py-2 text-sm text-foreground">Catch malformed responses</td></tr><tr><td class="px-4 py-2 text-sm text-foreground">Retry logic</td><td class="px-4 py-2 text-sm text-foreground">Handle failures</td></tr><tr><td class="px-4 py-2 text-sm text-foreground">Fallback models</td><td class="px-4 py-2 text-sm text-foreground">Reliability</td></tr></tbody></table></div>
Cost Management
Controlling AI API costs
When to use: When building profitable AI products
## AI Cost ManagementToken Economics
javascript// Track usage
async function callWithCostTracking(userId, prompt) {
const response = await anthropic.messages.create({...});
// Log usage
await db.usage.create({
userId,
inputTokens: response.usage.input_tokens,
outputTokens: response.usage.output_tokens,
cost: calculateCost(response.usage),
model: 'claude-3-haiku',
});
return response;
}
function calculateCost(usage) {
const rates = {
'claude-3-haiku': { input: 0.25, output: 1.25 }, // per 1M tokens
};
const rate = rates['claude-3-haiku'];
return (usage.input_tokens rate.input +
usage.output_tokens * rate.output) / 1_000_000;
}
### Cost Reduction Strategies
<div class="overflow-x-auto my-6"><table class="min-w-full divide-y divide-border border border-border"><thead><tr><th class="px-4 py-2 text-left text-sm font-semibold text-foreground bg-muted/50">Strategy</th><th class="px-4 py-2 text-left text-sm font-semibold text-foreground bg-muted/50">Savings</th></tr></thead><tbody class="divide-y divide-border"><tr><td class="px-4 py-2 text-sm text-foreground">Use cheaper models</td><td class="px-4 py-2 text-sm text-foreground">10-50x</td></tr><tr><td class="px-4 py-2 text-sm text-foreground">Limit output tokens</td><td class="px-4 py-2 text-sm text-foreground">Variable</td></tr><tr><td class="px-4 py-2 text-sm text-foreground">Cache common queries</td><td class="px-4 py-2 text-sm text-foreground">High</td></tr><tr><td class="px-4 py-2 text-sm text-foreground">Batch similar requests</td><td class="px-4 py-2 text-sm text-foreground">Medium</td></tr><tr><td class="px-4 py-2 text-sm text-foreground">Truncate input</td><td class="px-4 py-2 text-sm text-foreground">Variable</td></tr></tbody></table></div>Usage Limits
javascriptasync function checkUsageLimits(userId) {
const usage = await db.usage.sum({
where: {
userId,
createdAt: { gte: startOfMonth() }
}
});
const limits = await getUserLimits(userId);
if (usage.cost >= limits.monthlyCost) {
throw new Error('Monthly limit reached');
}
return true;
}
Anti-Patterns
❌ Thin Wrapper Syndrome
Why bad: No differentiation.
Users just use ChatGPT.
No pricing power.
Easy to replicate.
Instead: Add domain expertise.
Perfect the UX for specific task.
Integrate into workflows.
Post-process outputs.
❌ Ignoring Costs Until Scale
Why bad: Surprise bills.
Negative unit economics.
Can't price properly.
Business isn't viable.
Instead: Track every API call.
Know your cost per user.
Set usage limits.
Price with margin.
❌ No Output Validation
Why bad: AI hallucinates.
Inconsistent formatting.
Bad user experience.
Trust issues.
Instead: Validate all outputs.
Parse structured responses.
Have fallback handling.
Post-process for consistency.
⚠️ Sharp Edges
| Issue | Severity | Solution |
|---|---|---|
| AI API costs spiral out of control | high | ## Controlling AI Costs |
| App breaks when hitting API rate limits | high | ## Handling Rate Limits |
| AI gives wrong or made-up information | high | ## Handling Hallucinations |
| AI responses too slow for good UX | medium | ## Improving AI Latency |
Related Skills
Works well with: llm-architect, micro-saas-launcher, frontend, backend