llm-evaluation

Implement comprehensive evaluation strategies for LLM applications using automated metrics, human feedback, and benchmarking. Use when testing LLM performance, measuring AI application quality, or establishing evaluation frameworks.

View Source
name:llm-evaluationdescription:Implement comprehensive evaluation strategies for LLM applications using automated metrics, human feedback, and benchmarking. Use when testing LLM performance, measuring AI application quality, or establishing evaluation frameworks.

LLM Evaluation

Master comprehensive evaluation strategies for LLM applications, from automated metrics to human evaluation and A/B testing.

Do not use this skill when

  • The task is unrelated to llm evaluation

  • You need a different domain or tool outside this scope
  • Instructions

  • Clarify goals, constraints, and required inputs.

  • Apply relevant best practices and validate outcomes.

  • Provide actionable steps and verification.

  • If detailed examples are required, open resources/implementation-playbook.md.
  • Use this skill when

  • Measuring LLM application performance systematically

  • Comparing different models or prompts

  • Detecting performance regressions before deployment

  • Validating improvements from prompt changes

  • Building confidence in production systems

  • Establishing baselines and tracking progress over time

  • Debugging unexpected model behavior
  • Core Evaluation Types

    1. Automated Metrics


    Fast, repeatable, scalable evaluation using computed scores.

    Text Generation:

  • BLEU: N-gram overlap (translation)

  • ROUGE: Recall-oriented (summarization)

  • METEOR: Semantic similarity

  • BERTScore: Embedding-based similarity

  • Perplexity: Language model confidence
  • Classification:

  • Accuracy: Percentage correct

  • Precision/Recall/F1: Class-specific performance

  • Confusion Matrix: Error patterns

  • AUC-ROC: Ranking quality
  • Retrieval (RAG):

  • MRR: Mean Reciprocal Rank

  • NDCG: Normalized Discounted Cumulative Gain

  • Precision@K: Relevant in top K

  • Recall@K: Coverage in top K
  • 2. Human Evaluation


    Manual assessment for quality aspects difficult to automate.

    Dimensions:

  • Accuracy: Factual correctness

  • Coherence: Logical flow

  • Relevance: Answers the question

  • Fluency: Natural language quality

  • Safety: No harmful content

  • Helpfulness: Useful to the user
  • 3. LLM-as-Judge


    Use stronger LLMs to evaluate weaker model outputs.

    Approaches:

  • Pointwise: Score individual responses

  • Pairwise: Compare two responses

  • Reference-based: Compare to gold standard

  • Reference-free: Judge without ground truth
  • Quick Start

    from llm_eval import EvaluationSuite, Metric

    Define evaluation suite


    suite = EvaluationSuite([
    Metric.accuracy(),
    Metric.bleu(),
    Metric.bertscore(),
    Metric.custom(name="groundedness", fn=check_groundedness)
    ])

    Prepare test cases


    test_cases = [
    {
    "input": "What is the capital of France?",
    "expected": "Paris",
    "context": "France is a country in Europe. Paris is its capital."
    },
    # ... more test cases
    ]

    Run evaluation


    results = suite.evaluate(
    model=your_model,
    test_cases=test_cases
    )

    print(f"Overall Accuracy: {results.metrics['accuracy']}")
    print(f"BLEU Score: {results.metrics['bleu']}")

    Automated Metrics Implementation

    BLEU Score


    from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction

    def calculate_bleu(reference, hypothesis):
    """Calculate BLEU score between reference and hypothesis."""
    smoothie = SmoothingFunction().method4

    return sentence_bleu(
    [reference.split()],
    hypothesis.split(),
    smoothing_function=smoothie
    )

    Usage


    bleu = calculate_bleu(
    reference="The cat sat on the mat",
    hypothesis="A cat is sitting on the mat"
    )

    ROUGE Score


    from rouge_score import rouge_scorer

    def calculate_rouge(reference, hypothesis):
    """Calculate ROUGE scores."""
    scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
    scores = scorer.score(reference, hypothesis)

    return {
    'rouge1': scores['rouge1'].fmeasure,
    'rouge2': scores['rouge2'].fmeasure,
    'rougeL': scores['rougeL'].fmeasure
    }

    BERTScore


    from bert_score import score

    def calculate_bertscore(references, hypotheses):
    """Calculate BERTScore using pre-trained BERT."""
    P, R, F1 = score(
    hypotheses,
    references,
    lang='en',
    model_type='microsoft/deberta-xlarge-mnli'
    )

    return {
    'precision': P.mean().item(),
    'recall': R.mean().item(),
    'f1': F1.mean().item()
    }

    Custom Metrics


    def calculate_groundedness(response, context):
    """Check if response is grounded in provided context."""
    # Use NLI model to check entailment
    from transformers import pipeline

    nli = pipeline("text-classification", model="microsoft/deberta-large-mnli")

    result = nli(f"{context} [SEP] {response}")[0]

    # Return confidence that response is entailed by context
    return result['score'] if result['label'] == 'ENTAILMENT' else 0.0

    def calculate_toxicity(text):
    """Measure toxicity in generated text."""
    from detoxify import Detoxify

    results = Detoxify('original').predict(text)
    return max(results.values()) # Return highest toxicity score

    def calculate_factuality(claim, knowledge_base):
    """Verify factual claims against knowledge base."""
    # Implementation depends on your knowledge base
    # Could use retrieval + NLI, or fact-checking API
    pass

    LLM-as-Judge Patterns

    Single Output Evaluation


    def llm_judge_quality(response, question):
    """Use GPT-5 to judge response quality."""
    prompt = f"""Rate the following response on a scale of 1-10 for:
  • Accuracy (factually correct)

  • Helpfulness (answers the question)

  • Clarity (well-written and understandable)
  • Question: {question}
    Response: {response}

    Provide ratings in JSON format:
    {{
    "accuracy": <1-10>,
    "helpfulness": <1-10>,
    "clarity": <1-10>,
    "reasoning": "<brief explanation>"
    }}
    """

    result = openai.ChatCompletion.create(
    model="gpt-5",
    messages=[{"role": "user", "content": prompt}],
    temperature=0
    )

    return json.loads(result.choices[0].message.content)

    Pairwise Comparison


    def compare_responses(question, response_a, response_b):
    """Compare two responses using LLM judge."""
    prompt = f"""Compare these two responses to the question and determine which is better.

    Question: {question}

    Response A: {response_a}

    Response B: {response_b}

    Which response is better and why? Consider accuracy, helpfulness, and clarity.

    Answer with JSON:
    {{
    "winner": "A" or "B" or "tie",
    "reasoning": "<explanation>",
    "confidence": <1-10>
    }}
    """

    result = openai.ChatCompletion.create(
    model="gpt-5",
    messages=[{"role": "user", "content": prompt}],
    temperature=0
    )

    return json.loads(result.choices[0].message.content)

    Human Evaluation Frameworks

    Annotation Guidelines


    class AnnotationTask:
    """Structure for human annotation task."""

    def __init__(self, response, question, context=None):
    self.response = response
    self.question = question
    self.context = context

    def get_annotation_form(self):
    return {
    "question": self.question,
    "context": self.context,
    "response": self.response,
    "ratings": {
    "accuracy": {
    "scale": "1-5",
    "description": "Is the response factually correct?"
    },
    "relevance": {
    "scale": "1-5",
    "description": "Does it answer the question?"
    },
    "coherence": {
    "scale": "1-5",
    "description": "Is it logically consistent?"
    }
    },
    "issues": {
    "factual_error": False,
    "hallucination": False,
    "off_topic": False,
    "unsafe_content": False
    },
    "feedback": ""
    }

    Inter-Rater Agreement


    from sklearn.metrics import cohen_kappa_score

    def calculate_agreement(rater1_scores, rater2_scores):
    """Calculate inter-rater agreement."""
    kappa = cohen_kappa_score(rater1_scores, rater2_scores)

    interpretation = {
    kappa < 0: "Poor",
    kappa < 0.2: "Slight",
    kappa < 0.4: "Fair",
    kappa < 0.6: "Moderate",
    kappa < 0.8: "Substantial",
    kappa <= 1.0: "Almost Perfect"
    }

    return {
    "kappa": kappa,
    "interpretation": interpretation[True]
    }

    A/B Testing

    Statistical Testing Framework


    from scipy import stats
    import numpy as np

    class ABTest:
    def __init__(self, variant_a_name="A", variant_b_name="B"):
    self.variant_a = {"name": variant_a_name, "scores": []}
    self.variant_b = {"name": variant_b_name, "scores": []}

    def add_result(self, variant, score):
    """Add evaluation result for a variant."""
    if variant == "A":
    self.variant_a["scores"].append(score)
    else:
    self.variant_b["scores"].append(score)

    def analyze(self, alpha=0.05):
    """Perform statistical analysis."""
    a_scores = self.variant_a["scores"]
    b_scores = self.variant_b["scores"]

    # T-test
    t_stat, p_value = stats.ttest_ind(a_scores, b_scores)

    # Effect size (Cohen's d)
    pooled_std = np.sqrt((np.std(a_scores)2 + np.std(b_scores)2) / 2)
    cohens_d = (np.mean(b_scores) - np.mean(a_scores)) / pooled_std

    return {
    "variant_a_mean": np.mean(a_scores),
    "variant_b_mean": np.mean(b_scores),
    "difference": np.mean(b_scores) - np.mean(a_scores),
    "relative_improvement": (np.mean(b_scores) - np.mean(a_scores)) / np.mean(a_scores),
    "p_value": p_value,
    "statistically_significant": p_value < alpha,
    "cohens_d": cohens_d,
    "effect_size": self.interpret_cohens_d(cohens_d),
    "winner": "B" if np.mean(b_scores) > np.mean(a_scores) else "A"
    }

    @staticmethod
    def interpret_cohens_d(d):
    """Interpret Cohen's d effect size."""
    abs_d = abs(d)
    if abs_d < 0.2:
    return "negligible"
    elif abs_d < 0.5:
    return "small"
    elif abs_d < 0.8:
    return "medium"
    else:
    return "large"

    Regression Testing

    Regression Detection


    class RegressionDetector:
    def __init__(self, baseline_results, threshold=0.05):
    self.baseline = baseline_results
    self.threshold = threshold

    def check_for_regression(self, new_results):
    """Detect if new results show regression."""
    regressions = []

    for metric in self.baseline.keys():
    baseline_score = self.baseline[metric]
    new_score = new_results.get(metric)

    if new_score is None:
    continue

    # Calculate relative change
    relative_change = (new_score - baseline_score) / baseline_score

    # Flag if significant decrease
    if relative_change < -self.threshold:
    regressions.append({
    "metric": metric,
    "baseline": baseline_score,
    "current": new_score,
    "change": relative_change
    })

    return {
    "has_regression": len(regressions) > 0,
    "regressions": regressions
    }

    Benchmarking

    Running Benchmarks


    class BenchmarkRunner:
    def __init__(self, benchmark_dataset):
    self.dataset = benchmark_dataset

    def run_benchmark(self, model, metrics):
    """Run model on benchmark and calculate metrics."""
    results = {metric.name: [] for metric in metrics}

    for example in self.dataset:
    # Generate prediction
    prediction = model.predict(example["input"])

    # Calculate each metric
    for metric in metrics:
    score = metric.calculate(
    prediction=prediction,
    reference=example["reference"],
    context=example.get("context")
    )
    results[metric.name].append(score)

    # Aggregate results
    return {
    metric: {
    "mean": np.mean(scores),
    "std": np.std(scores),
    "min": min(scores),
    "max": max(scores)
    }
    for metric, scores in results.items()
    }

    Resources

  • references/metrics.md: Comprehensive metric guide

  • references/human-evaluation.md: Annotation best practices

  • references/benchmarking.md: Standard benchmarks

  • references/a-b-testing.md: Statistical testing guide

  • references/regression-testing.md: CI/CD integration

  • assets/evaluation-framework.py: Complete evaluation harness

  • assets/benchmark-dataset.jsonl: Example datasets

  • scripts/evaluate-model.py: Automated evaluation runner
  • Best Practices

  • Multiple Metrics: Use diverse metrics for comprehensive view

  • Representative Data: Test on real-world, diverse examples

  • Baselines: Always compare against baseline performance

  • Statistical Rigor: Use proper statistical tests for comparisons

  • Continuous Evaluation: Integrate into CI/CD pipeline

  • Human Validation: Combine automated metrics with human judgment

  • Error Analysis: Investigate failures to understand weaknesses

  • Version Control: Track evaluation results over time
  • Common Pitfalls

  • Single Metric Obsession: Optimizing for one metric at the expense of others

  • Small Sample Size: Drawing conclusions from too few examples

  • Data Contamination: Testing on training data

  • Ignoring Variance: Not accounting for statistical uncertainty

  • Metric Mismatch: Using metrics not aligned with business goals