kpi-dashboard-design

Design effective KPI dashboards with metrics selection, visualization best practices, and real-time monitoring patterns. Use when building business dashboards, selecting metrics, or designing data visualization layouts.

View Source
name:kpi-dashboard-designdescription:Design effective KPI dashboards with metrics selection, visualization best practices, and real-time monitoring patterns. Use when building business dashboards, selecting metrics, or designing data visualization layouts.

KPI Dashboard Design

Comprehensive patterns for designing effective Key Performance Indicator (KPI) dashboards that drive business decisions.

Do not use this skill when

  • The task is unrelated to kpi dashboard design

  • You need a different domain or tool outside this scope
  • Instructions

  • Clarify goals, constraints, and required inputs.

  • Apply relevant best practices and validate outcomes.

  • Provide actionable steps and verification.

  • If detailed examples are required, open resources/implementation-playbook.md.
  • Use this skill when

  • Designing executive dashboards

  • Selecting meaningful KPIs

  • Building real-time monitoring displays

  • Creating department-specific metrics views

  • Improving existing dashboard layouts

  • Establishing metric governance
  • Core Concepts

    1. KPI Framework

    LevelFocusUpdate FrequencyAudience
    StrategicLong-term goalsMonthly/QuarterlyExecutives
    TacticalDepartment goalsWeekly/MonthlyManagers
    OperationalDay-to-dayReal-time/DailyTeams

    2. SMART KPIs

    Specific: Clear definition
    Measurable: Quantifiable
    Achievable: Realistic targets
    Relevant: Aligned to goals
    Time-bound: Defined period

    3. Dashboard Hierarchy

    ├── Executive Summary (1 page)
    │ ├── 4-6 headline KPIs
    │ ├── Trend indicators
    │ └── Key alerts
    ├── Department Views
    │ ├── Sales Dashboard
    │ ├── Marketing Dashboard
    │ ├── Operations Dashboard
    │ └── Finance Dashboard
    └── Detailed Drilldowns
    ├── Individual metrics
    └── Root cause analysis

    Common KPIs by Department

    Sales KPIs

    Revenue Metrics:
    - Monthly Recurring Revenue (MRR)
    - Annual Recurring Revenue (ARR)
    - Average Revenue Per User (ARPU)
    - Revenue Growth Rate

    Pipeline Metrics:
    - Sales Pipeline Value
    - Win Rate
    - Average Deal Size
    - Sales Cycle Length

    Activity Metrics:
    - Calls/Emails per Rep
    - Demos Scheduled
    - Proposals Sent
    - Close Rate

    Marketing KPIs

    Acquisition:
    - Cost Per Acquisition (CPA)
    - Customer Acquisition Cost (CAC)
    - Lead Volume
    - Marketing Qualified Leads (MQL)

    Engagement:
    - Website Traffic
    - Conversion Rate
    - Email Open/Click Rate
    - Social Engagement

    ROI:
    - Marketing ROI
    - Campaign Performance
    - Channel Attribution
    - CAC Payback Period

    Product KPIs

    Usage:
    - Daily/Monthly Active Users (DAU/MAU)
    - Session Duration
    - Feature Adoption Rate
    - Stickiness (DAU/MAU)

    Quality:
    - Net Promoter Score (NPS)
    - Customer Satisfaction (CSAT)
    - Bug/Issue Count
    - Time to Resolution

    Growth:
    - User Growth Rate
    - Activation Rate
    - Retention Rate
    - Churn Rate

    Finance KPIs

    Profitability:
    - Gross Margin
    - Net Profit Margin
    - EBITDA
    - Operating Margin

    Liquidity:
    - Current Ratio
    - Quick Ratio
    - Cash Flow
    - Working Capital

    Efficiency:
    - Revenue per Employee
    - Operating Expense Ratio
    - Days Sales Outstanding
    - Inventory Turnover

    Dashboard Layout Patterns

    Pattern 1: Executive Summary

    ┌─────────────────────────────────────────────────────────────┐
    │ EXECUTIVE DASHBOARD [Date Range ▼] │
    ├─────────────┬─────────────┬─────────────┬─────────────────┤
    │ REVENUE │ PROFIT │ CUSTOMERS │ NPS SCORE │
    │ $2.4M │ $450K │ 12,450 │ 72 │
    │ ▲ 12% │ ▲ 8% │ ▲ 15% │ ▲ 5pts │
    ├─────────────┴─────────────┴─────────────┴─────────────────┤
    │ │
    │ Revenue Trend │ Revenue by Product │
    │ ┌───────────────────────┐ │ ┌──────────────────┐ │
    │ │ /\ /\ │ │ │ ████████ 45% │ │
    │ │ / \ / \ /\ │ │ │ ██████ 32% │ │
    │ │ / \/ \ / \ │ │ │ ████ 18% │ │
    │ │ / \/ \ │ │ │ ██ 5% │ │
    │ └───────────────────────┘ │ └──────────────────┘ │
    │ │
    ├─────────────────────────────────────────────────────────────┤
    │ 🔴 Alert: Churn rate exceeded threshold (>5%) │
    │ 🟡 Warning: Support ticket volume 20% above average │
    └─────────────────────────────────────────────────────────────┘

    Pattern 2: SaaS Metrics Dashboard

    ┌─────────────────────────────────────────────────────────────┐
    │ SAAS METRICS Jan 2024 [Monthly ▼] │
    ├──────────────────────┬──────────────────────────────────────┤
    │ ┌────────────────┐ │ MRR GROWTH │
    │ │ MRR │ │ ┌────────────────────────────────┐ │
    │ │ $125,000 │ │ │ /── │ │
    │ │ ▲ 8% │ │ │ /────/ │ │
    │ └────────────────┘ │ │ /────/ │ │
    │ ┌────────────────┐ │ │ /────/ │ │
    │ │ ARR │ │ │ /────/ │ │
    │ │ $1,500,000 │ │ └────────────────────────────────┘ │
    │ │ ▲ 15% │ │ J F M A M J J A S O N D │
    │ └────────────────┘ │ │
    ├──────────────────────┼──────────────────────────────────────┤
    │ UNIT ECONOMICS │ COHORT RETENTION │
    │ │ │
    │ CAC: $450 │ Month 1: ████████████████████ 100% │
    │ LTV: $2,700 │ Month 3: █████████████████ 85% │
    │ LTV/CAC: 6.0x │ Month 6: ████████████████ 80% │
    │ │ Month 12: ██████████████ 72% │
    │ Payback: 4 months │ │
    ├──────────────────────┴──────────────────────────────────────┤
    │ CHURN ANALYSIS │
    │ ┌──────────┬──────────┬──────────┬──────────────────────┐ │
    │ │ Gross │ Net │ Logo │ Expansion │ │
    │ │ 4.2% │ 1.8% │ 3.1% │ 2.4% │ │
    │ └──────────┴──────────┴──────────┴──────────────────────┘ │
    └─────────────────────────────────────────────────────────────┘

    Pattern 3: Real-time Operations

    ┌─────────────────────────────────────────────────────────────┐
    │ OPERATIONS CENTER Live ● Last: 10:42:15 │
    ├────────────────────────────┬────────────────────────────────┤
    │ SYSTEM HEALTH │ SERVICE STATUS │
    │ ┌──────────────────────┐ │ │
    │ │ CPU MEM DISK │ │ ● API Gateway Healthy │
    │ │ 45% 72% 58% │ │ ● User Service Healthy │
    │ │ ███ ████ ███ │ │ ● Payment Service Degraded │
    │ │ ███ ████ ███ │ │ ● Database Healthy │
    │ │ ███ ████ ███ │ │ ● Cache Healthy │
    │ └──────────────────────┘ │ │
    ├────────────────────────────┼────────────────────────────────┤
    │ REQUEST THROUGHPUT │ ERROR RATE │
    │ ┌──────────────────────┐ │ ┌──────────────────────────┐ │
    │ │ ▁▂▃▄▅▆▇█▇▆▅▄▃▂▁▂▃▄▅ │ │ │ ▁▁▁▁▁▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁ │ │
    │ └──────────────────────┘ │ └──────────────────────────┘ │
    │ Current: 12,450 req/s │ Current: 0.02% │
    │ Peak: 18,200 req/s │ Threshold: 1.0% │
    ├────────────────────────────┴────────────────────────────────┤
    │ RECENT ALERTS │
    │ 10:40 🟡 High latency on payment-service (p99 > 500ms) │
    │ 10:35 🟢 Resolved: Database connection pool recovered │
    │ 10:22 🔴 Payment service circuit breaker tripped │
    └─────────────────────────────────────────────────────────────┘

    Implementation Patterns

    SQL for KPI Calculations

    -- Monthly Recurring Revenue (MRR)
    WITH mrr_calculation AS (
    SELECT
    DATE_TRUNC('month', billing_date) AS month,
    SUM(
    CASE subscription_interval
    WHEN 'monthly' THEN amount
    WHEN 'yearly' THEN amount / 12
    WHEN 'quarterly' THEN amount / 3
    END
    ) AS mrr
    FROM subscriptions
    WHERE status = 'active'
    GROUP BY DATE_TRUNC('month', billing_date)
    )
    SELECT
    month,
    mrr,
    LAG(mrr) OVER (ORDER BY month) AS prev_mrr,
    (mrr - LAG(mrr) OVER (ORDER BY month)) / LAG(mrr) OVER (ORDER BY month) 100 AS growth_pct
    FROM mrr_calculation;

    -- Cohort Retention
    WITH cohorts AS (
    SELECT
    user_id,
    DATE_TRUNC('month', created_at) AS cohort_month
    FROM users
    ),
    activity AS (
    SELECT
    user_id,
    DATE_TRUNC('month', event_date) AS activity_month
    FROM user_events
    WHERE event_type = 'active_session'
    )
    SELECT
    c.cohort_month,
    EXTRACT(MONTH FROM age(a.activity_month, c.cohort_month)) AS months_since_signup,
    COUNT(DISTINCT a.user_id) AS active_users,
    COUNT(DISTINCT a.user_id)::FLOAT / COUNT(DISTINCT c.user_id)
    100 AS retention_rate
    FROM cohorts c
    LEFT JOIN activity a ON c.user_id = a.user_id
    AND a.activity_month >= c.cohort_month
    GROUP BY c.cohort_month, EXTRACT(MONTH FROM age(a.activity_month, c.cohort_month))
    ORDER BY c.cohort_month, months_since_signup;

    -- Customer Acquisition Cost (CAC)
    SELECT
    DATE_TRUNC('month', acquired_date) AS month,
    SUM(marketing_spend) / NULLIF(COUNT(new_customers), 0) AS cac,
    SUM(marketing_spend) AS total_spend,
    COUNT(new_customers) AS customers_acquired
    FROM (
    SELECT
    DATE_TRUNC('month', u.created_at) AS acquired_date,
    u.id AS new_customers,
    m.spend AS marketing_spend
    FROM users u
    JOIN marketing_spend m ON DATE_TRUNC('month', u.created_at) = m.month
    WHERE u.source = 'marketing'
    ) acquisition
    GROUP BY DATE_TRUNC('month', acquired_date);

    Python Dashboard Code (Streamlit)

    import streamlit as st
    import pandas as pd
    import plotly.express as px
    import plotly.graph_objects as go

    st.set_page_config(page_title="KPI Dashboard", layout="wide")

    Header with date filter


    col1, col2 = st.columns([3, 1])
    with col1:
    st.title("Executive Dashboard")
    with col2:
    date_range = st.selectbox(
    "Period",
    ["Last 7 Days", "Last 30 Days", "Last Quarter", "YTD"]
    )

    KPI Cards


    def metric_card(label, value, delta, prefix="", suffix=""):
    delta_color = "green" if delta >= 0 else "red"
    delta_arrow = "▲" if delta >= 0 else "▼"
    st.metric(
    label=label,
    value=f"{prefix}{value:,.0f}{suffix}",
    delta=f"{delta_arrow} {abs(delta):.1f}%"
    )

    col1, col2, col3, col4 = st.columns(4)
    with col1:
    metric_card("Revenue", 2400000, 12.5, prefix="$")
    with col2:
    metric_card("Customers", 12450, 15.2)
    with col3:
    metric_card("NPS Score", 72, 5.0)
    with col4:
    metric_card("Churn Rate", 4.2, -0.8, suffix="%")

    Charts


    col1, col2 = st.columns(2)

    with col1:
    st.subheader("Revenue Trend")
    revenue_data = pd.DataFrame({
    'Month': pd.date_range('2024-01-01', periods=12, freq='M'),
    'Revenue': [180000, 195000, 210000, 225000, 240000, 255000,
    270000, 285000, 300000, 315000, 330000, 345000]
    })
    fig = px.line(revenue_data, x='Month', y='Revenue',
    line_shape='spline', markers=True)
    fig.update_layout(height=300)
    st.plotly_chart(fig, use_container_width=True)

    with col2:
    st.subheader("Revenue by Product")
    product_data = pd.DataFrame({
    'Product': ['Enterprise', 'Professional', 'Starter', 'Other'],
    'Revenue': [45, 32, 18, 5]
    })
    fig = px.pie(product_data, values='Revenue', names='Product',
    hole=0.4)
    fig.update_layout(height=300)
    st.plotly_chart(fig, use_container_width=True)

    Cohort Heatmap


    st.subheader("Cohort Retention")
    cohort_data = pd.DataFrame({
    'Cohort': ['Jan', 'Feb', 'Mar', 'Apr', 'May'],
    'M0': [100, 100, 100, 100, 100],
    'M1': [85, 87, 84, 86, 88],
    'M2': [78, 80, 76, 79, None],
    'M3': [72, 74, 70, None, None],
    'M4': [68, 70, None, None, None],
    })
    fig = go.Figure(data=go.Heatmap(
    z=cohort_data.iloc[:, 1:].values,
    x=['M0', 'M1', 'M2', 'M3', 'M4'],
    y=cohort_data['Cohort'],
    colorscale='Blues',
    text=cohort_data.iloc[:, 1:].values,
    texttemplate='%{text}%',
    textfont={"size": 12},
    ))
    fig.update_layout(height=250)
    st.plotly_chart(fig, use_container_width=True)

    Alerts Section


    st.subheader("Alerts")
    alerts = [
    {"level": "error", "message": "Churn rate exceeded threshold (>5%)"},
    {"level": "warning", "message": "Support ticket volume 20% above average"},
    ]
    for alert in alerts:
    if alert["level"] == "error":
    st.error(f"🔴 {alert['message']}")
    elif alert["level"] == "warning":
    st.warning(f"🟡 {alert['message']}")

    Best Practices

    Do's

  • Limit to 5-7 KPIs - Focus on what matters

  • Show context - Comparisons, trends, targets

  • Use consistent colors - Red=bad, green=good

  • Enable drilldown - From summary to detail

  • Update appropriately - Match metric frequency
  • Don'ts

  • Don't show vanity metrics - Focus on actionable data

  • Don't overcrowd - White space aids comprehension

  • Don't use 3D charts - They distort perception

  • Don't hide methodology - Document calculations

  • Don't ignore mobile - Ensure responsive design
  • Resources

  • Stephen Few's Dashboard Design

  • Edward Tufte's Principles

  • Google Data Studio Gallery